Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2860422.v1

ABSTRACT

SARS-CoV-2 infection requires Spike protein mediating fusion between the viral and cellular membranes. The fusogenic activity of Spike requires its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zddhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino–acid-long N-terminally extended protein with 37-times higher Spike acylating activity, leading to enhanced viral infectivity. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to generate more infectious viruses.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19 , Colitis
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.15.537011

ABSTRACT

SARS-CoV-2 infection requires Spike protein mediating fusion between the viral and cellular membranes. The fusogenic activity of Spike requires its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to transfection. Here, we find that SARS-CoV-2 infection triggers a change in the transcriptional start site of the zddhc20 gene, both in cells and in an in vivo infection model, resulting in a 67-amino-acid-long N-terminally extended protein with 37-times higher Spike acylating activity, leading to enhanced viral infectivity. Furthermore, we observed the same induced transcriptional change in response to other challenges, such as chemically induced colitis, indicating that SARS-CoV-2 hijacks an existing cell damage response pathway to generate more infectious viruses.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19 , Colitis
SELECTION OF CITATIONS
SEARCH DETAIL